Training robust PHM algorithms requires a lot of data that can effectively represent different scenarios of the system operation. Acquiring this data can be challenging and expensive in a real setting, especially data from faulty or degraded operations. One promising solution to this problem is to generate synthetic training data from simulation using multidomain tools like Simulink®, to represent a variety of operating conditions and fault states. Simulations can even be tuned to a real system in operation as a Digital Twin, allowing for machine-specific predictions and what-if scenarios. We welcome submissions that explore component-level and system-level simulations to generate synthetic operating data for training PHM algorithms.

Important Dates

- Draft full paper: **February 28, 2022**
- Notification of acceptance: **March 25, 2022**
- Author registration due: **April 15, 2022**
- Final Manuscript Due: **April 15, 2022**
- Conference Dates: **June 6-8, 2022**

Please send an email to the session organizers, Seth DeLand (sdeland@mathworks.com), after submitting papers through the conference system.

All presented papers that meet IEEE quality standards will be submitted to IEEE Xplore® for publication.